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For an integrally closed reduced ring R it is not always the case that the polynomial ring RLXI 

is integrally closed. In this paper, the question of when R[X] is integrally closed is shown to be 

related to when R is integrally closed in the ring of finite fractions of R, Q,(R). In the main 

theorem it is shown that if R’ is the integral closure of R in Q,(R), then R’[X] is the integral 

closure of R[X] in T(R[X]), the total quotient ring of R[X]. This result is then used to charac- 

terize when R[X] satisfies any of the weaker integrality properties of being n-root closed, root 

closed, or seminormal. 

0. Preliminaries 

In what follows, R is assumed to be a commutative ring with unity and no 

nonzero nilpotents; i.e., R is a reduced ring. We denote by T(R) the total quotient 

ring of R and when we say that R is integrally closed we mean that R is integrally 

closed in T(R). 

A weaker integrality property is that of seminormality. A ring R is said to be semi- 

normal in a ring T if RC T and for each TV T, whenever t2 and t3 are in R, then 

t is in R. As with being integrally closed, R is said to be seminormal if R is semi- 

normal in T(R). 

In [6, Theorem 41 we gave necessary and sufficient conditions in order that the 

polynomial ring R[X] be integrally closed. We will give another characterization 

here and use it to determine when R[X] satisfies any of the weaker integrality pro- 

perties of being n-root closed, root closed, or seminormal. 

Two notions which will play a prominent role in our work are those of a dense 

ideal and the content of a polynomial. As in [5], we say that an ideal I is dense if 

rl= (0) implies r = 0. For a polynomial g E R [Xl, the content of g is the ideal c(g) 

of R generated by the coefficients of g. A well-known theorem of McCoy states that 

g E R [X] is a zero divisor if and only if there is a nonzero r E R such that rg = 0. It 
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is possible that the content of g contains only zero divisors of R yet g is not a zero 

divisor of R[X]; in other words, c(g) can be finitely generated dense ideal which 

contains only zero divisors. 

Throughout the paper gj denotes the coefficient on Xj for g(X) E R[X]. Any 

other notation or terminology is standard as in [l] or [3]. 

1. Integrality properties of R[Xl 

In [6] we established necessary and sufficient conditions for R [X] to be integrally 

closed. These conditions were stated in the negative; e.g., R[X] is not integrally 

closed if and only if there is a quotient of polynomials f/g E T(R [Xl) \ R [X] which 

is integral over R [6, Theorem 41. From the proof of this statement, we see that 

multiplication by f/g defines an R-module homomorphism from the content of g 

to R. In particular, (f/g)gj=fj for each pair of coefficients fj and gj of f and g 

respectively. Thus we are led to consider the so called ring of finite fractions of R 
which we denote by Q,(R). One way to construct the ring Q,(R) is to repeat the con- 

struction given in Lambek’s book [6, pp. 36-461 for the complete ring of quotients 

Q(R) replacing the phrase “dense ideal” with “finitely generated dense ideal”. We 

sketch the construction here. 

Let J, and J2 be finitely generated dense ideals of R and let fi E Hom,(J,, R), 
fi E Hom,(Jz, R). Then J1 J2 is a finitely generated dense ideal of R so that we may 

define fi + f2 and fi f2 as homomorphisms on J1 J2. Define fi and f2 to be equivalent 

if they agree on a dense ideal J of R. From [5, Lemma 1, p. 381 we see that fi and 

fi agree on a dense ideal J if and only if they agree on Ji fl J2 and hence if and only 

if they agree on J1 J2. The elements of Q,(R) are the equivalence classes of the 

homomorphisms. 

As with Q(R), Q,(R) contains both R and T(R) as subrings. Moreover, 

Q,(R) c QUO and so W [Xl) c ~(Q,WWI) since T(R WI) c VQ(R)[XI). 
As we have assumed that R is reduced, Q(R) is von Neumann regular. Hence, 

Q(R)[X] is integrally closed (see for example [4, p. 2241). Thus if we let S be the 

integral closure of R in Q(R), then S[X] is integrally closed in T(Q(R)[X]) since it 

is integrally closed in Q(R)[X]. Moreover, as T(R[X])C T(Q(R)[X]) we have that 

the integral closure of R [X] in T(R [Xl) is contained in S[X]. As our main theorem 

we will show that the integral closure of R [X] in T(R [Xl) can be identified with the 

ring R’[X] where R’ is the integral closure of R in Q,,(R). We use this result to 

characterize when R[X] satisfies the weaker integrality properties of being n-root 

closed, root closed, and semi-normal. 

Before presenting the main theorem we need a pair of lemmas. 

Lemma 1. Let SE QO(R). Then there exist polynomials f and g in R[X] with c(g) 
dense in R such that s E Horn, (c(g), R) and for euch j, S(gj) = fJ. In particular, 
Q,(R) can be considered as a subring of T(R[X]). 
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Proof. As SE Q,(R) there exists a finitely generated dense ideal .I= (gO,gl, . . . ,g,) 

such that s E Hom(J, R). For each j = 0, 1, . . . , n set S&j) =fi, f = C fjX’ and 

g = C g,X’. Then for each i and j, f;gj=fjg; since S(gigj) =giS(gj) =gjs(g;). Hence, 

(f/g)gj =fj for each j = 0, 1, . . . , n and we can consider s as an element of T(R[X]). 

0 

Lemma 2. Let s E Q(R). If SJC Q,,(R) for some finitely generated dense ideal J of 
R, then SE QO(R). 

Proof. Let J= (ao,al, . . . , a,) be a dense ideal of R such that saiE QO(R) for each 

i=O, 1 , . . . , n. By Lemma 1 there exist polynomials Fi and Gj in R[X] such that 

sa; = Fi /G; . 

Let t be the maximum degree of the Gi’s and define polynomials F and G by 

F(X)=saOGO+salGIX “‘+s~~G~X~~‘~+~~~+~~,G,X”“” 
and 

G(X)=aoGo+a,G,X “’ + a2G2X2t+2 + ... + a,G,X”‘f”. 

That the content of G is dense follows from McCoy’s Theorem; if r E R is such that 

rc(G) = (0), then raiGi = 0 implies rai = 0 for each i. As J is dense, r = 0. Thus c(G) 

is dense and s = F/G E Hom(c(G), R). 0 

Remark. While the result above is not really new, (see for example [8, pp. 151, 197 

& 201]), we have not been able to find in the literature, a previous proof involving 

quotients of polynomials. Hence we have given the above proof as a way to further 

illustrate the relation between QO(R) and T(R[X]). 

Theorem 3. Let R’ be the integral closure of the reduced ring R in QO(R). Then 
R’[X] is the integral closure of R[X] in T(R[X]). 

Proof. Let f/g E T(R [Xl) be integral over R[X]. Then from the discussion above 

we have that f/g = s(X) E S[X]. By way of contradiction assume that f/g $ Q,(R). 
Then we may assume that s(X) has minimal degree for all such quotients. 

Write s(X) = s,Xk + Sk_ tX k-l 
+...+.so and g(x)=g,X”+g,_rXmP1+...+g. 

Then mimicking the proof of [6, Theorem 41, we see that sk E S \ Q,(R) and that 

skgJ E Q,(R) for each j. As the content of g is dense, we have that, contrary to 

assumption, skE Q,(R). Hence, f/gE Q,(R)[X]. As R’[X] is the integral closure of 

R[X] in Q,(R)[X], R’[X] is the integral closure of R[X] in T(R[X]). Cl 

Corollary 4. For a reduced ring R, R[X] is integrally closed if and only if R is 
integrally closed in Q,(R). El 

We can also use Theorem 3 to characterize when R[X] satisfies any of the weaker 

integrality properties of being n-root closed, root closed and seminormal. Note that 
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according to [7, Example 1.41 it is possible for R [X] to be root closed without being 

integrally closed even if R = T(R). 

Corollary 5. Let R be a reduced ring. Then R[X] is n-root closed if and only if R 
is n-root closed in Q,(R). 

Proof. If R is not n-root closed in Q,(R), then there exists an s E Q,(R)\ R such that 

sn E R. As s can be written as a quotient of polynomials, SE T(R[X]) and so R[X] 
is not n-root closed. 

On the other hand, if R is n-root closed in Q,(R), then R is n-root closed in R’, 
the integral closure of R in Q,(R). Hence by [2, Theorem 11, R[X] is n-root closed 

in R’[X]. As R’[X] is the integral closure of R[X] in T(R[X]), R[X] is n-root 

closed. q 

The same proof holds if we replace n-root closed by either root closed or semi- 

normal, the latter by way of [2, Theorem 21. Hence we have a final corollary. 

Corollary 6. Let R be a reduced ring. Then R [X] is root closed (seminormal) if and 
only if R is root closed (seminormal) in Q,(R). 0 
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