CHARACTERIZING WHEN R[X] IS INTEGRALLY CLOSED, II

Thomas G. LUCAS*

Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A.

Communicated by C.A. Weibel Received 20 September 1988

For an integrally closed reduced ring R it is not always the case that the polynomial ring R[X] is integrally closed. In this paper, the question of when R[X] is integrally closed is shown to be related to when R is integrally closed in the ring of finite fractions of R, $Q_o(R)$. In the main theorem it is shown that if R' is the integral closure of R in $Q_o(R)$, then R'[X] is the integral closure of R[X] in T(R[X]), the total quotient ring of R[X]. This result is then used to characterize when R[X] satisfies any of the weaker integrality properties of being *n*-root closed, root closed, or seminormal.

0. Preliminaries

In what follows, R is assumed to be a commutative ring with unity and no nonzero nilpotents; i.e., R is a reduced ring. We denote by T(R) the total quotient ring of R and when we say that R is integrally closed we mean that R is integrally closed in T(R).

A weaker integrality property is that of seminormality. A ring R is said to be seminormal in a ring T if $R \subset T$ and for each $t \in T$, whenever t^2 and t^3 are in R, then t is in R. As with being integrally closed, R is said to be seminormal if R is seminormal in T(R).

In [6, Theorem 4] we gave necessary and sufficient conditions in order that the polynomial ring R[X] be integrally closed. We will give another characterization here and use it to determine when R[X] satisfies any of the weaker integrality properties of being *n*-root closed, root closed, or seminormal.

Two notions which will play a prominent role in our work are those of a dense ideal and the content of a polynomial. As in [5], we say that an ideal I is dense if rI = (0) implies r = 0. For a polynomial $g \in R[X]$, the content of g is the ideal c(g)of R generated by the coefficients of g. A well-known theorem of McCoy states that $g \in R[X]$ is a zero divisor if and only if there is a nonzero $r \in R$ such that rg = 0. It

0022-4049/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

^{*} Supported in part by funds from the Foundation of the University of North Carolina at Charlotte and the State of North Carolina.

is possible that the content of g contains only zero divisors of R yet g is not a zero divisor of R[X]; in other words, c(g) can be finitely generated dense ideal which contains only zero divisors.

Throughout the paper g_j denotes the coefficient on X^j for $g(X) \in R[X]$. Any other notation or terminology is standard as in [1] or [3].

1. Integrality properties of R[X]

In [6] we established necessary and sufficient conditions for R[X] to be integrally closed. These conditions were stated in the negative; e.g., R[X] is not integrally closed if and only if there is a quotient of polynomials $f/g \in T(R[X]) \setminus R[X]$ which is integral over R [6, Theorem 4]. From the proof of this statement, we see that multiplication by f/g defines an R-module homomorphism from the content of gto R. In particular, $(f/g)g_j=f_j$ for each pair of coefficients f_j and g_j of f and grespectively. Thus we are led to consider the so called *ring of finite fractions* of Rwhich we denote by $Q_o(R)$. One way to construct the ring $Q_o(R)$ is to repeat the construction given in Lambek's book [6, pp. 36-46] for the complete ring of quotients Q(R) replacing the phrase "dense ideal" with "finitely generated dense ideal". We sketch the construction here.

Let J_1 and J_2 be finitely generated dense ideals of R and let $f_1 \in \text{Hom}_R(J_1, R)$, $f_2 \in \text{Hom}_R(J_2, R)$. Then J_1J_2 is a finitely generated dense ideal of R so that we may define $f_1 + f_2$ and f_1f_2 as homomorphisms on J_1J_2 . Define f_1 and f_2 to be equivalent if they agree on a dense ideal J of R. From [5, Lemma 1, p. 38] we see that f_1 and f_2 agree on a dense ideal J if and only if they agree on $J_1 \cap J_2$ and hence if and only if they agree on J_1J_2 . The elements of $Q_o(R)$ are the equivalence classes of the homomorphisms.

As with Q(R), $Q_{\circ}(R)$ contains both R and T(R) as subrings. Moreover, $Q_{\circ}(R) \subset Q(R)$ and so $T(R[X]) \subset T(Q_{\circ}(R)[X])$ since $T(R[X]) \subset T(Q(R)[X])$.

As we have assumed that R is reduced, Q(R) is von Neumann regular. Hence, Q(R)[X] is integrally closed (see for example [4, p. 224]). Thus if we let S be the integral closure of R in Q(R), then S[X] is integrally closed in T(Q(R)[X]) since it is integrally closed in Q(R)[X]. Moreover, as $T(R[X]) \subset T(Q(R)[X])$ we have that the integral closure of R[X] in T(R[X]) is contained in S[X]. As our main theorem we will show that the integral closure of R[X] in T(R[X]) can be identified with the ring R'[X] where R' is the integral closure of R in $Q_{\circ}(R)$. We use this result to characterize when R[X] satisfies the weaker integrality properties of being *n*-root closed, root closed, and semi-normal.

Before presenting the main theorem we need a pair of lemmas.

Lemma 1. Let $s \in Q_o(R)$. Then there exist polynomials f and g in R[X] with c(g) dense in R such that $s \in \text{Hom}_R(c(g), R)$ and for each j, $s(g_j) = f_j$. In particular, $Q_o(R)$ can be considered as a subring of T(R[X]).

Proof. As $s \in Q_o(R)$ there exists a finitely generated dense ideal $J = (g_0, g_1, ..., g_n)$ such that $s \in \text{Hom}(J, R)$. For each j = 0, 1, ..., n set $s(g_j) = f_j$, $f = \sum f_j X^j$ and $g = \sum g_j X^j$. Then for each *i* and *j*, $f_i g_j = f_j g_i$ since $s(g_i g_j) = g_i s(g_j) = g_j s(g_i)$. Hence, $(f/g)g_j = f_j$ for each j = 0, 1, ..., n and we can consider *s* as an element of T(R[X]).

Lemma 2. Let $s \in Q(R)$. If $sJ \subset Q_o(R)$ for some finitely generated dense ideal J of R, then $s \in Q_o(R)$.

Proof. Let $J = (a_0, a_1, ..., a_n)$ be a dense ideal of R such that $sa_i \in Q_o(R)$ for each i = 0, 1, ..., n. By Lemma 1 there exist polynomials F_i and G_i in R[X] such that $sa_i = F_i/G_i$.

Let t be the maximum degree of the G_i 's and define polynomials F and G by

$$F(X) = sa_0G_0 + sa_1G_1X^{t+1} + sa_2G_2X^{2t+2} + \dots + sa_nG_nX^{nt+n}$$

and

$$G(X) = a_0 G_0 + a_1 G_1 X^{t+1} + a_2 G_2 X^{2t+2} + \dots + a_n G_n X^{nt+n}$$

That the content of G is dense follows from McCoy's Theorem; if $r \in R$ is such that rc(G) = (0), then $ra_iG_i = 0$ implies $ra_i = 0$ for each *i*. As J is dense, r = 0. Thus c(G) is dense and $s = F/G \in \text{Hom}(c(G), R)$. \Box

Remark. While the result above is not really new, (see for example [8, pp. 151, 197 & 201]), we have not been able to find in the literature, a previous proof involving quotients of polynomials. Hence we have given the above proof as a way to further illustrate the relation between $Q_o(R)$ and T(R[X]).

Theorem 3. Let R' be the integral closure of the reduced ring R in $Q_{\circ}(R)$. Then R'[X] is the integral closure of R[X] in T(R[X]).

Proof. Let $f/g \in T(R[X])$ be integral over R[X]. Then from the discussion above we have that $f/g = s(X) \in S[X]$. By way of contradiction assume that $f/g \notin Q_{\circ}(R)$. Then we may assume that s(X) has minimal degree for all such quotients.

Write $s(X) = s_k X^k + s_{k-1} X^{k-1} + \dots + s_0$ and $g(x) = g_m X^m + g_{m-1} X^{m-1} + \dots + g$. Then mimicking the proof of [6, Theorem 4], we see that $s_k \in S \setminus Q_o(R)$ and that $s_k g_j \in Q_o(R)$ for each *j*. As the content of *g* is dense, we have that, contrary to assumption, $s_k \in Q_o(R)$. Hence, $f/g \in Q_o(R)[X]$. As R'[X] is the integral closure of R[X] in $Q_o(R)[X]$, R'[X] is the integral closure of R[X] in T(R[X]). \Box

Corollary 4. For a reduced ring R, R[X] is integrally closed if and only if R is integrally closed in $Q_{\circ}(R)$. \Box

We can also use Theorem 3 to characterize when R[X] satisfies any of the weaker integrality properties of being *n*-root closed, root closed and seminormal. Note that

according to [7, Example 1.4] it is possible for R[X] to be root closed without being integrally closed even if R = T(R).

Corollary 5. Let R be a reduced ring. Then R[X] is n-root closed if and only if R is n-root closed in $Q_{\circ}(R)$.

Proof. If R is not n-root closed in $Q_o(R)$, then there exists an $s \in Q_o(R) \setminus R$ such that $s^n \in R$. As s can be written as a quotient of polynomials, $s \in T(R[X])$ and so R[X] is not n-root closed.

On the other hand, if R is n-root closed in $Q_{\circ}(R)$, then R is n-root closed in R', the integral closure of R in $Q_{\circ}(R)$. Hence by [2, Theorem 1], R[X] is n-root closed in R'[X]. As R'[X] is the integral closure of R[X] in T(R[X]), R[X] is n-root closed. \Box

The same proof holds if we replace n-root closed by either root closed or seminormal, the latter by way of [2, Theorem 2]. Hence we have a final corollary.

Corollary 6. Let R be a reduced ring. Then R[X] is root closed (seminormal) if and only if R is root closed (seminormal) in $Q_{\circ}(R)$. \Box

Acknowledgment

I would like to thank Fred Call for introducing me both to the ring $Q_{\circ}(R)$ and to Stenström's book.

References

- [1] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley, London, 1969).
- [2] J. Brewer, D. Costa and K. McKrimmon, Seminormality and root closure in polynomial rings and algebraic curves, J. Algebra 58 (1979) 217-226.
- [3] R. Gilmer, Multiplicative Ideal Theory (Dekker, New York, 1972).
- [4] R. Gilmer and T. Parker, Semigroup rings as Prüfer rings, Duke Math. J. 41 (1974) 219-230.
- [5] J. Lambek, Lectures on Rings and Modules (Blaisdell, Walthen, 1966).
- [6] T. Lucas, Characterizing when R[X] is integrally closed, Proc. Amer. Math. Soc, to appear.
- [7] T. Lucas, Root closure and R[X], Comm. Algebra, to appear.
- [8] B. Stenström, Rings of Quotients, Lecture Notes in Mathematics 217 (Springer, Berlin, 1975).

52